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Abstract. The generalized Hebb rule (with a non-symmetrical synaptic matrix) allows us to
create simple neural networks with complicated large time behaviour. These networks can
simulate, in a sense, any dynamics and, in particular, can generate any hyperbolic attractors and
invariant sets.

The explicit mathematical algorithm allows us, by adjusting the network parameters (the
neuron number, coupling matrix and thresholds) to obtain a network with given large time
dynamics.

1. Introduction

In this paper, neural networks are considered

M
xi(t+l)=U<ZKijxj(t)+9i> i=1..,M. (1.1)

j=1
Over the last decade, a number of works have focused on system (1.1) playing a crucial
role as a simple model of attractor neural networks [1-5]. Besides the case of continuous
states {; € R), we shall study models with discrete states (sping {—1, 1}

j=1

In (1.1), let us fix a sigmoidal functios € C*> with fast decreasing derivative’ and
satisfyingo (+00) > o(—o0). Denote byP the system parameters (the number of neurons
M, the coupling matrixK and the thresholdg): P = {M, K, 6}.

The attractors of (1.1) with symmetriK are also well studied [1-3]. Other cases have
been investigated, mainly by computer simulations [4-7], see also [8] and references therein.
Here we consider the fully asymmetric SK model where the synaptic mAfris defined
by the following ‘generalized’ Hebb rule

P
K[j = ZA”BU 0< p < M (13)
=1

and suggest an analytic approach to this attractor problem (computer simulations are used,
mainly to check the analytic results). This small generalization of the classical Hebb rule
K = AAT makes the appearance of many new physical effects in systems (1.1) and (1.2)
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possible. Moreover, generalization (1.3) allows us to construct exactly solvable analytical
models of chaotic neural networks.

The aim of this paper is to show, by (1.3), that systems (1.1) and (1.2) possess wonderful
properties. They can simulate any prescrili@dsmooth dynamical systems (maps) and
generate all structurally stable chaotic (for example, hyperbolic) attractors. More precisely,
for a given structurally stable attractor, there exists a suitable choice of the paralReters
such that network (1.1) generates the same (up to a homeomorphism) attractor.

One can also construct the network with a given topology of the structurally stable local
attractors and their attraction basins.

Another analytical approach to chaotic behaviour in the neural networks has been
suggested in a recent paper [9]. It gives a special kind of chaos connected with the so-
called snap-back repellers (which occur in maps with special stretching properties). Detailed
mathematical definition of such repellers is sufficiently complicated and we refer to [9] and
references therein. Here we just mention the main properties of these repellers. Systems
which possess them generate an infinite number of periodic cycles. Moreover, these repellers
are robust: they do not vanish under small smooth perturbations of the dynamical system.
(Let us note that hyperbolic invariant sets and attractors also have analogous properties.)

The model [9] can be considered as a complicated variant of (1.1). On the other hand,
it is easy to show (see below) that any snap-back repellers can be obtained by (1.1).

Let us turn to case (1.2). Given map—> G(g), we can create network (1.2) simulating
this map (see section 2). For discrete networks (1.2) chaotic attractors are impossible
since all the trajectories are periodic (maximal peridf).2 Instead of chaos, we observe
complicated periodic trajectories. The results depend on properties of a give@ araghthe
number of sping/. Under condition (1.3) (one-dimensional cager 1), one can prove that
the maximal possible period id. Let us note here, that in some other models of asymmetric
neural networks cycle lengths have exponentially large order [8]. We have carried out
computer simulations for the classic chaotic maps. They have shown that approximations
(1.3) with differentM > 1 give a number of periods within the interval, [#f]. For fixed
M, we usually observe a family of stable attracting periodic cycles. Periods depehd on
in a very complicated and intriguing manner (see section 4 and figure 2).

This picture can be explained by recent work [10] and classical results [11]. Network
(1.2), simulating mapG, generates some perturbed trajectories (pseudo-orbits). oAt
each iteration, the corresponding ereohas the ordens .

Can such pseudo-orbits correspond to some actual trajectory of the dynamical system
G? Much attention was given to this problem (see, for example, [11,12]). It was shown
that, in the neighbourhood of hyperbolic attractor or invariant sets, there holds a so-called
shadow property, i.e. a trajectory can be found close to the pseudo-orbit for all

Our calculations and analytic results yield that (1.2) can generate some periodic pseudo-
orbits (corresponding to actual orbits coexisting in the hyperbolic attractor). However, to
create a number of orbits, we should @multaneouslya number of networks (1.2) with
different M (one can imagine, for example, that we turn on and turn off some neurons).
It is remarkable that, for a fixed?, the periodic cycles are very stable (it can give a new
approach to the problem of periodic trajectory stabilization [13]). The average cycle length
is M* where the exponent depends on the chaotic attractor properties (see [10]).

To conclude this introduction, let us note that models (1.1) and (1.2) can be useful for
pattern recognition and associative memory devices (as the optimal control systems) for the
‘neural identification’ of the dynamical systems and other applications. For example,
superpositions of network (1.2) and similar networks generate any complicated prescribed
spatial-temporal spin patterns (see sections 2.1 and 3.3).
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2. Main mathematical results

2.1. Continuous states

We begin with the case of continuous states (1.1). The main assertion can be formulated
as follows. Define quantitieg; (the ‘hidden’ collective coordinates) hy = Zjle Bijx;j,
i=1...,p.

Then the ‘*hidden’g-dynamics will be given by

M p
q(t+1) =) Byo ( > Awgr (1) + ek) = F(q. P) (2.1)
k=1 r=1

and the neuron dynamics is governeddy

p
xi(t—i—l):(f(ZA,-lq;(t)—i—@,-) i=1...,M. (2.2)
=1
Thus, the spins form some ‘coherent pattern’ evolving together with and they are
strongly correlated (see below).
The family of maps (2.1), depending on the parametBrshas the following key
property (which can be called ‘absorbtion with approximation’).

Theorem 1Let O be thep-dimensional unit cub&® = {q : |¢;| < 1} andg — G(g) any
prescribedC!-mapping that mapg inside Q. Then, for anys > 0, there is a such choice
of the parameterd that

|G(g) — Flq. P)| |G, (@) — Fy(q, P)| <& (g€ (2.3)

(‘approximation’) and, moreover, for any poigt € R”, iterationsgq, F(q), F2(q) =
F(F(g)),..., F"(q) ... enter for the cub& and remain inQ i.e. this cube is an absorbing
set (‘absorbtion’). This means th&t'(¢) € Q for anyn > no($, q).

In other words, this assertion can be explained as follows.

For given mapG (such thatG(Q) C Q), we can construct the neural network with
‘hidden’ g-dynamics simulating this mag for large iterations (times). Indeed, the
iterations quickly enter for the cub@. In this cube, any prescribed can be approximated
by F(q, P) with any given precisiors.

The proof of this assertion is a development of the well known results on so-called
multilayered neural networks, see [14—16]. An outline of the proof can be found in section 3,
mathematical details are given in appendix A.

Note that the absorbtion property plays an important role. In fact, approximation (2.3)
may hold only in compact domains. Thus, we should be sure that any iteration sequence
attains, at some step, such a compact domain.

This result has the following basic consequences.

(1) For any givenT > 0 ande > 0, choosing sufficiently smali(e, T), one cane-
approximate any families ofi-iterationsg, G(¢), G2(q), ..., GT (¢). This means that, for
any positive integefj < N(¢) and anyg € Q, one hagF/(q, P) — G/(q)| < €. Thus, we
can globally control families of trajectories (of any finite length).

(2) The second basic corollary is that if the prescribed Gapas some robust (rough)
local chaotic attractor (or invariant set) (for example, hyperbolic attrdtteith the shadow
property [8]), we can obtain the neural network with the hidgedynamics generating a
topologically equivalent local attractor (invariant sEt) (This equivalency means that there
exists a homeomorphisithat maps the5-trajectories insidé™ onto theF-ones insidd’).
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Thus, we can say that all robust chaotic regimes, occurring in dynamics, can be realized
by network (1.1).

Examples of robust maps are given, for instance, bydtfexiom Smale diffeomorphisms
(which can have a number of local attractors and their basins), the Anosov maps and others.
The famous simple example is given by the Arnold map(xify) mod 1 denotes a point
on a two-dimensional torus thefi(x, y) = (2x + y, x + y).

All homoclinic situations, under some suppositions, can also be realized by the networks
(since, due to the Birkhoff-Smale theorem, they are connected with hyperbolic sets). Inside
such hyperbolic sets the infinite number of unstable cycles coexist and periods of these
cycles can be extremely large. The behaviour of the map iteration inside these sets, in a
sense, is completely random (see [11, 12]) and can be described by the so-called Bernoulli
shifts [11].

All the snap-back repellers (see [9]) can also occur in dynamics (1.1). Indeed, it is easy
to see, by the definition (see [9]), that these repellers are robust. Such repellers also born
infinite collections of periodic cycles with large periods [9].

A very simple criterion of chaos onset in one-dimensional maps was suggested by
[17,18]: a cycle with period three entails the chaos existence. If a givenGnbhps the
period 3, then, for small, the corresponding neural mdpalso has period 3 (for smat),
thus also generating chaos.

Remark. Interesting chaotic maps are given by piecewise linear maps [19]. The simplest
classical example i6/(¢) = 2¢ mod 1, wheregg € [0, 1]. By piecewise linear maps we can
create dynamical systems simulating the Bernoulli shifts (i.e. completely ‘random’). For
such maps, inequality (2.3) can be satisfied anywhere excluding small neighbourhoods of
the break points.

(3) The third point is a possibility to create, by superpositions of (1.1) (or (1.2)) and
some additional networlgrbitrary prescribed spatial-temporal spin patterns

To see this, first let us note that although the SK model (1.1) can generate any attractors
it, nonetheless, cannot generate arbitraryatterns.

To see it, let us study the spin—spin correlators. First let us note that each chaotic
dynamicsF (g, P) generates, in a canonical manner, a invariant measgrgeon a chaotic
attractor (the so-called Bowen—Ruelle-Sinai (BRS) invariant measure). Theorem 1 yields,
roughly speaking, that systems (2.1) should generate all such measures (‘equiliprium’
densities). Indeed, since all the hyperbolic sets can occur in dynamics (2.1), all the BRS
measures can also appear, therefore, by adjusting the network parameters, we can change
u(g). Note that the limit measures (densitigs)can also depend on initial distributions
oin(q) = p(gq, 0). Infact, a number of hyperbolic local attractdtscan coexist in dynamics
(2.1) and each attractor has the corresponding attraction B&Ein. If, at initial moment,
the support ofp;, is contained iN3(I'y) thenu is a BRS measurg, induced byl;. If this
support has intersections with some basins, we ohtaas a linear combination of different
ur. Thus, in this case we have a set of different invariant measures.

Given u(g) one can calculate the corresponding invarieddistribution by (2.2). This
yields that the mean correlation betwedh and jth spins is defined by

P P
(xix;) = / . / U(Z Auqr + 95)0(2 Ajiqr + Qj)M(CI) dgs ... dg, (2.4)
Q I=1 =1

where the brackets denote time averaging. Thus, we can conclude that, although the spin
dynamics is chaotic, there exist strong spin correlations (siMicepins are ruled byp
hidden modeg; and usuallyp « M).
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To solve the problem of simulation of any spin patterns (with arbitrary correlations) let
us consider, in addition, the following network:

M
z(t) = sgr(Z Jijxj(t)) (i=12...N) (2.5)
j=1

where the quantities; € {1, —1} are some ‘outputs’ and theg are some ‘inputs’.

The key observation is that combinations of (2.5) and network (1.1) or (1.2) (generating
inputs x for (2.5)) allow us to creatgractically any prescribed output spatial-temporal
patterns We consider this problem in detail below, for the case of discrete states (1.2) (see
section 3.3).

2.2. Discrete states

For (1.2) we defingy; asq; = Zj”il B;js;. These quantities lie in a discrete d&t After
the first iterationg enter for3 and forever remains in it. We have

M 4
@+ =73 B/w(ZAqur(t) + 9k) = F(q. P). (2.6)
k=1 r=1

Thus we are dealing with the two dynamics: piecewise constant a3 — B from
(2.6) and discrete map (1.2). They are connected by relation (2.2) (whersgn).

For p = 1 equation (2.6) can be simplified. We can assume, without any loss of
generality, thatA;; = 1 and6; > 0,41, 6; € (0,—1) and denoteB; = b;. Then
equation (2.6) takes the form

M
gt +1) =Y beo(q(t) +6) = f(q(),b,6,m). 2.7)
k=1

Let beg € [0, 1] and f maps this interval into itself. There exists a natural partition of

[0, 1] in a number of subintervalg; = [—6;.1, —6;]. The behaviour of iterations (2.7) is
completely defined by some matrx; which is 1, if the imagef; = f(8;) lies in g;, and

0 otherwise. We can have only different valuesf; in B, thus, dynamics (2.7) generates
only periodic cycles and the maximal periodds In particular, the matrixy;; allows us to
determinate all the possible cycle lengths appearing in the system (2.7). In order to extract
these lengths we calculate matrix iteratiads A2, ..., AM. Non-zero diagonal elements

of the matrix A* correspond to the cycle with periad

Suppose thaif (¢) from (2.7) approximates some smooth or piecewise smoai)
(below we shall show that such approximations, of any precision, actually exist; see
theorem 2).

Thus, this partition [01] by subintervals{;};Z; gives some ‘round-error’ scheme
generating pseudo-orbits 6f.

Let us turn to the spin dynamics. Beginning with= 1, all s-patterns are\f vectors
sty =(1,1,...,1,—-1,...,—1), where the sign break is located gl coordinate ifg(r)
lies between-6; and —6; ;.

Let us take into consideration some initial spin distributions(s). This spin
distribution leads to some initial density. If the spin numbed/ is large, one can expect
that this density is strongly localized. In fact, let the spins be distributed randomly and
independently. Then, for larg¥, the density is a Gaussian peak. Calculations (see below)
show that coefficients; have orderM 1. Thus, initialg densityp;,(¢) is centred at 0 and
the peak width is Qv ~1/?).
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If we take other spin distributions, we can obtain peaks localized at pginis0.

However, this ‘strong’ localization is actually strong only for non-chaotic méaps
If iterations G” (¢°) give an isolated stable orbit, for example, with perifig then, for
almost all initial spin configurations, spin dynamics (1.3) also will give a periodic orbit
with the same periodyp. But if, on the contrary, the point® lies in some chaotic attractor,
then any domain of size @/~/?) contains, for largeM, a number of small subintervals
B; = O(M~1). Thus, there should exist a number of spin trajectories with large periods. It
was observed in computer simulations (see section 4).

Let us formulate now a discrete variant of theorem 1.

Theorem 2Let Q be thep-dimensional unit cub&® = {g : |¢:| < 1}, ¢ — G(g) be any
prescribedC®-mapping that map® in Q. Then, for anys > 0, there is a choice of the
parameterd’(8) such that

|G(g) — F(q, P)| <6 (2.8)

(‘approximation’) and, moreover, starting with any poirt < R?, iterations
q.F(q), F?(g) ... enter for the cubeQ and remain inQ i.e. this cube is absorbing
(‘absorbtion’).

Naturally, the spin numbe# (§) tends toco as the approximation precisign— 0. It
is easy to see that property (1) again holds. However, (2) is now invalid (as was discussed
above).

In section 3.3 we shall show that point (3) holds for discrete networks i.e. we can create
a superposition of two networks generating arbitrary prescribed time periodic (with any
given periodT’), by a suitable parameter choice.

3. Construction of network with the prescribed large time and spacetime behaviour

3.1. Continuous states

3.1.1. Outline of proof. Let us turn to the key ideas in proving theorem 1. The method is
constructive and robusand allows us to find the network simulating given dynantts

First of all, let us note that, if we remove the ‘absorbtion condition’ (that iteratiohs
enter for the cube, together with the second inequality (2.3)), then our assertion is well
known from the theory of multilayered neural networks [14-16].

To obtain our (stronger) assertion, we should combine these methods with new
approaches.

Let G be some map defined i@ mapping any points of this cube in its interior. Let
us extend (it is possible) this map by soi&map G on all R” in a special way. All the
iterationsG” shall enter forQ at some step (see appendix A) since thisan be chosen
as a contraction (fog outside of the cub@).

After this we find a special approximation of this néwin all spaceR”. To find it, we
first use standard ideas [16] that reduce (3.1) to the one-dimensionalgcas®), Then
G becomes a function of. Moreover, one can, without any loss of generality, assume
that this functionG is smooth and fast decreasing (from the Schwartz class). This reduced
approximation problem can be solved explicitly, by the classical ideas from the wavelet
theory [17]. We know that the wavelet methods are robust and effective in signal denoising
and compressing. Thus, this method is robust (see appendix A).
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Figure 1. Invariant measurg for x — 4x(1 — x) (full curve) and its neural approximation by
three neurons with precisiah= 10"° (AAA).

3.2. Discrete states

Here proof also proceeds into some steps. Following section 3.1, we note that one can only
consider the one-dimensional casg(q) € R, ¢ € R. The approximation satisfying (2.8)

can have, for example, the forrfi(g) = Z,’Yzl bysgn(g + 6;) andq € [0, 1]. Clearly, the
function f has constant values inside each interva, 1, —6;], whereo; > ;1.

Let us require that functiong(¢) and G(g) should coincide atM points g, =
—3(6i+1+6;) thenb; can be chosen by, = 3(G(qm) +G(q1)), b = 3(G(g1) — G(gi-1))-

Then for smooth ma the approximation error has order mag..1 — 6;|. (Of course,
there exist many other approximations, for example, one cangiake—6;, etc.)

In the next section, we describe results of calculations with these approximations. To
conclude this section, let us note that a natural approximation of the piecewise linear
map G(g) = 29 — 1mod1 leads to the following simplest mapping of the discrete set
B ={12...M}. This map transforms to j(i) = 2/ — 1 modM. Here the periods can
be calculated analytically that allows us to explain figure 1. In fact, it is easy to show that
such a map has a cycle of lorfg(whereT > 0 is integer) only and only if 2= 1 modp
wherep # 2 is a prime divisor ofM. For example, ifM = 28 then the period is 3 since
28=2x2x7and 2=1mod 7, if M = 1026 then there occurs a cycle with period 18
(1026= 2 x 3® x 19 and 28 = 1 mod 19 according to the ‘little’ Fermat theorem).

In general, the period¥ are values of the Euler functiop(p) of odd prime divisors
of the spin numbeM.
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This simple example helps us to see the strong irregularity of the periods (see figure 1).
In fact, for M = 1024 we obtain” = 1; nonetheless for close valug = 1018 we have
T =508, since 509 is prime!

In the following we shall use this example.

3.3. Generation of arbitrary patterns by two discrete networks

Let z;(¢) be an arbitrary output pattern consisting of 1-et (wherei =1,2,..., N and
t =1,2,...,T). Let us consider the following systems of linear equations for unknown
connections/;;
M
() =Y Jysj(1) i=1...,N t=12...T (3.1)
j=1

wheres; () andz;(¢) are given. Let us se¥ > T. Then systems (3.1) can be resolved
if T patternss; are linearly independent (i.e. there exist no coefficiedtssuch that
S Cusi(r) = 0 for all i).

It is not difficult to check this condition for concretg, B, 0 and M. For example, we
can take these parameters so that network (1.2) will simulate thegmap2g — 1 mod 1
(see the example from section 3.2). Then system (1.2) can generate a cycle @ lorig

where alls patterns for different = 1,2, ..., Tp are linearly independent. This follows
from section 2.2. Indeed, the vectarg) ares(r) = (1,1,...,1,-1,..., —1) where we
obtain the different numbers of 1 for different= 1,2, ..., Tp. This simple observation

completes the proof.

4. Computer simulations

We discuss here the following three problems: (1) approximation of giveny F (see
(2.3)), (2) closeness of iterations, and (3) invariant measure§ fand F'.

We focus our attention on the three classical one-dimensional maps: (a) the map
— rgexp(—rq), g > 0, (b) the quadratic mag — rq(1 —¢g), 0 < r < 4 and (c)
qg — rgmod 1.

4.1. Continuous case

For (a) ¢ = 13,1 = 0.1) we, using only 7-8 neurons, can obtain an approximati@iving
the precisiors = 5.26x 10-2 within g-interval [0, 40]. We observe a stable attracting cycle
of length 4. The relative differences between the iteratiGhsand F7, even forT > 1000,
do not exceed X 1072

We see a similar situation for the quadratic map, while we are dealing with stable cycles.
All stable periodic cycles of (b) and its neural approximatidhare very close.

It is well known that one can observe the chaotic behaviour for (b) fbr instance,
lies within [3.8, 4.0]. In this case trajectories af and the approximatiod are close but
only for a small number of iterations: eventually, the trajectories diverge exponentially. For
example, let the approximation precision be at1@ndr = 4. Then we have observed,
during 50-150 (depending on initial daghiterations, the relative difference betweEh(q)
andG7 (g) at 2-3%.

However, the statistical properties 6fandG(q) = rq(1— g) are always very similar.
In fact, the invariant measure for »r = 4 can be calculated analytically (seldom is the
case!) [21]. ltisp = 1/7[x(1 — x)]7Y2.
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The measure of the neural approximation can be calculated by computer (the algorithm
see [21]). The accordance is excellent: curves coincide anywhere excluding very small
neighbourhoods of boundary points, see figure 1.

4.2. Discrete case

Here we have considered mainly maps (b) and (c). The most interesting example is (b),
since this map shows the period doubling bifurcations when the paramétkes values
atr = 35,356, 357... [21]. If r at 4, we observe the chaos [21].

While we are dealing with stable periodic cycles, discrete approximations work quite
well, however now we should take about 500-1000 neurons. To check it, we have prepared
the two independent programs based on two different algorithms (one of them we have
briefly discussed in section 2.2). These programs calculate the periods appearing in dynamics
(2.7). Suppose we tak®f = 600 neurons (spins) and approximate the map rg(1—q)

(that gives the precisiod in (2.5) of the order 0.001). We have seen that actually (2.6)
exhibits the same bifurcation sequence (periodic cycles with period 2, 4, 8, 16). Here results
are not sensitive to details of approximation scheme (see section 3.2).

For the chaotic domainr(= 4) we observe another picture. The dependence of the
period on the neuron numb@&f becomes very non-trivial. For case (c) it can be described
analytically (for special approximations, see section 3.3).

For example, if we use approximation (2.7) of map (b) with= 200, we observe only
the single cycle with period® = 9. If M = 500, we have the three different cycles with
periodsP; = 4, P, = 4 and P; = 11. ForM = 800 periodsP; = 2, P, = 3, P3 = 11
have been received, fa/ = 900 we have obtained®; = 3, P, = 5, P; = 19 etc.

The period lengths (as well as the number of periods) is extremely sensitive &md
to the approximation choice. For example, whih= 4125 we have found 5 periods:
P = 3, P, = 5, P3 = 8, Py = 21, P5 = 66, forM = 4126P1 = 3, P, = 20, P3 =45 and
for M = 4127 P, = 3, P, = 110. In the last case the overwhelming majority of initial
configurations evolves to a cycle with = 110, and it is typical. However, even a small
change of the matri¥< can drastically change the output periodic spin trajectories.

This complicated period spectrum can be illustrated by figure 2.

We have also calculated the spin—spin correlators for discrete approximations. Here the
accordance between computer results and our predictions is better faV/swblere we have
the long cycles. If this cycle is relatively short (length40), the actual correlator values
may differ strongly from (2.4) (for example, one can obtain 0.13-@40 whereas the
theory foresees-0.18). These results can be easily explained. In contrast to the continuous
case (see section 4.1), statistical propertieg;aind its discrete neural approximatiof's
are very different. In fact, for discrete case attractorFofs a union of limit cycles and
equilibria. Number of these cycles, its lengths and attraction basins are very sensitive to
approximation choice and number of neurons, see figure 3. The analogous behaviour we
already observed in the example of section 3.2 was studied completely analytically.

5. Conclusion

In this paper we have established the possibility of generatioangfstructurally stable
kinds of chaos (including all hyperbolic attractors and invariant sets) by the simplest neural
network: the fully asymmetric SK model. The superposition of two such networks can
generate any spatial-temporal patterns.

Naturally such assertions can be proved only analytically. The key role here is played
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Figure 2. Cycle length appearing in two different neural approximations: 6f> 4x(1 — x)
with same number of neurong corresponds to one approximatiof,to another.

by the generalized Hebb rule (1.3) that gives some explicit choice of the synaptic matrix.
We have not considered learning methods here.

We suppose that the most effective (from a calculative point of view) learning method
should be based on a gradient descent or a combination of the Hebb rule and gradient
methods.

To conclude, we would like to note some key points. The great advantage of
such a model as the Hopfield model with symmetrical synaptic matrix is that it can be
studied analytically because its properties remind us of those of a common statistical
mechanical system possessing an energy (mathematically, Lyapunov functional decreasing
along trajectories). In nature, however, we observe non-symmetrical neuron connections
that lead to periodic and chaotic behaviour. In such a real situation, it is impossible to find
an analogue of the energy (Lyapunov functional).

The generalized Hebb rule (1.3) allows us to overcome this difficulty. From the physical
view point, such a rule leads to the appearance of the natural ‘order paramgtésse
section 2.1) governing the dynamics of the network.

The main result of such an approach is as follows. For any prescribed global geometry of
an attractor, if this attractor is structurally stable (robust), we can, by (1.3), create analytically
solvable simple models of neural networks with topologically equivalent attractor geometry.

Hebb rule (1.3) also helps to find a number of the coupled oscillator and reaction—
diffusion systems with analogous complicated large time behaviour [22-24]. The simple
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Figure 3. Length of cycles appearing in neural approximations e 4x(1 — x).

example can be given by the classical Hopfield system [25]

dg; _

M
dr _ZlKij(’(‘Ij)_bql'—i-H,- b > 0.
j=

The important point is a wonderful connection between (1.3) and the Lax pair representation.

SO00

(5.1)

The substitution (1.3) fo leads to a remarkable system [23, 24]. This systenbfer0

can be rewritten in the Lax form (see appendix B).
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Appendix A. Proof of theorem 1

This proof is standard, mainly follows [16, 23] and proceeds in a number of steps.

Step 1. Prolongation of ma@g. Suppose&G is defined inQ andG(Q) ¢ Q. Then we can

extend this map on alR? so that this extended ma will satisfy:
(a) G € CY(RP) and, inside the cub®, G = G;

(b) |G| < alq| for any g € R? which lies outside of some small neighbourhoddof
Q. The constant O< a < 1 (this means that outside @ the G is a contracting map).

Moreover, let beG;(¢) =0 if |g| > 2.
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SuchG can be obtained in a simple way, and we omit the details. Noticelthaid
a can be chosen so that all the iteratiasts will converge toQ.

Step 2. Approximation of the map by averaging. Let us approximate this new map
uniformly in R” in the normC?! with accuracys/10 by a newC>(R?)-map H from the
Schwartz class(R?) of fast decreasing functions. This approximation can be obtained by
averaging [23]

Hi@) = [ Gla-qaard (A1)

wherew, is a cut-off positiveC*-function with the support in the ball of radius We
have,|H, — G|c: tends to 0 ag — 0. Using it, we take a small and setH = H,.

Step 3. Reformulation and simplification of the approximation probleimstead of (2.3),
we shall consider the following new problerto find parameterd? such that

|H(q) — F(q. P)I, |0H (9)/3q; — dF (g, P)/dqi| < 381+ g]) (g € R")(A.2)

for this new field H from the Schwartz clas§(R”). We notice that (A.2) implies (2.3).
Moreover, for smalls, since H is contracting outside ofp anda < 1, the neural

approximationF also is contracting outside af. Thus, the solution of (A.2) resolves
both our approximation and absorbtion problems from theorem 1 for the originaldnap

Remark. We can, without any loss of generality, suppose tHal) in (A.2) is a scalar
function of ¢g. In fact, we can combine, in a special way, the separate approximations of
each component]; (see final step). Thus, let us assulfiec R. Below we omit the
component index (up to final step).

Step 4. Representation of scalar functiinby sum of ‘plane waves’ and one-dimensional
reformulation of the problem. It follows [16]. The functionH can be approximated, for
large L, by the sum

L
H@) =LY mx)  x=(q€) (A.3)
=1

where the vectorg' are uniformly distributed among the unit sphere and the brackets
denote the standard scalar product. Representation (A.3) can be considered as a sum of
‘plane waves'n;(x). The following step gives approximations gfix).

Step 5. Approximation of functiong(x). We temporarily omit index. Denotea =
(ar,as,...,ay) and X = (X4, ..., Xy). Let us define

M

E(x.a, X, M) =) cio(ai(x — Xy)). (A.4)

i=1
Moreover, let us set

px,a,c,X) =nkx)—&x,a, X, M). (A.5)
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In this section our aim is to resolve, for ady> 0, the following approximation problem

for n(z): to find an integeM and numbers;, ¢; and X; such that
Ip(x,a,c,X)| <81+ |x|) (x e R) (A.6)
ap(x,a,c, X)
‘ ox

Due to steps 1-4, the solution of (A.6) and (A.7) allows us to find the solution of our

original approximation problem.

Let us focus attention on (A.7). Our aim is to show that, for any 0, there exists a
vectora(8) with components; > 0 and vectors(§) and X (§) such that for the derivatives
of n and& the following estimate holds:

v(x) — & (x,a,¢, X)| < § (x eR) v(x) = 1 (x). (A.8)
It is clear that (A.8) implies (A.6) and (A.7). In fact, integrating— &’ one has

<4 (x € R). (A7)

| =Y ateo@en - X —o-axp s swl <8kl (A9)
0 i=1

that gives
InGx) = Y& (o (a;i(x — X))| < §(1+ |x]) (A.10)
i=0

whereag = 0, ¢ = n(0)o~1(0) and one supposes (without any loss of generality) that

o (0) £ 0.
Let i, zx (Wherek = 1, 2, 3) be numbers such that < z, < z3 and

yi+v2+y3=0 Y121 + v222 + yaza = 0. (A.11)
Then the function

p(z) = i%d’(z —-2) (A.12)
is a ‘wavelet-type’ fur::tion such that

/oo p(z)dz=0 /oo zp(z)dz = 0. (A.13)
Note that - h

/OO v(x)dx = 0. (A.14)

Let us suppose, in addition, that

/OO xv(x)dx = 0. (A.15)

oo

If the approximation problem (A.8) is solved for sueh= 7/, then it is resolvable in
general case (when only (A.14) holds). In fact, one can always write

b =v—co'(x). (A.16)

Sinceo (+00) # o (—00), we can choosé so thatv satisfies (A.15).
To solve the approximation problem (A.8), let us write the well known Céldétentity
(playing a key role in the wavelet theory)

v(z) =C, /Ooo /oo A73C 0L X)p(A Mz — X)) dX dA (A.17)
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where

C(x, X) =/ v()p(A Nz — X)) dz (A.18)

[e.¢]
andC, is a constant depending on the function These relations hold, sinaeis a fast
decreasing functionv(e S(R)).
The next step is now a transformation of (A.17) into in a discrete sum. To do this, let
us observe the following. If we can appoximate integral (A19) by

Ry R
v(r, R1, R, 2) =C, / / A2COn X)p (W Yz — X)) dX di (A.19)
r —R

(whereR1, R andr > 0) with any precisiors;, then the approximation problem (A.8) is
solved.

In fact, integral (A.19) can be replaced, with any precision, by a finite sum (the
Riemaniann sum). Namely, for ary> 0 one has

suplv(x) = > Y aPmyCou, X)p 0z — Xp)| <€ (A.20)

zel i

for some;, X; andm;;. By (A.12) the sum in estimate (A.20) can be rewritten as

YLy cio’(a;(x — X0).
Finally, to solve the approximation problem, one needs to check that the contributions
Jy. of type

Ji= / (/Oo A3 C(L X)p( Tz = X)) dX) dz
o

oo

A (A.21)
Jp = f (f 273CGL X)p 0Tz = X)) dX) d
- R

satisfy
[Jk| < x(r, R) (A.22)

wherex — 0 asR — oo andr — 0.
In order to investigate/;, let us estimateC (i, X). First, let us notice that, due to
condition (A.13) and the Taylor expansion, one has, fer < 1, that

IC(x, X)| < A3 / Y20 (X + say)p(y) dy s € [0,1].
R

Usingv € S(R), one obtains
IC(x, X)] < CyA3@+ X~

and, therefore|J;| < ¢(Cy + Dr.

Thus estimate (A24) holds fdr = 1.

ConsiderJ,. One observes thadtC(x, X)| < cy|1 + A~2X|™" for any N > 0 and
0 < A < 1. The estimate of, follows now from inequalities

o0 1

/A’3dkf A+ 21X Ndx < /,\*Zd)\(1+rlR)*N </ dr(L+:tR)7V.
R 0

It implies that

|Jo| < c(/ A73dn + R_l) -0 (R — 00).
R

Finally, it completes the fifth step and thus the approximation problem);fis solved.
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Final step. This step is a combination of the previous steps and the ‘plane wave’
representation.

Let us consider approximatiorisfrom (A.4) and substitute it into the right-hand side
of (A.2). It gives the following representation for componeftsof H (where we again
introduce into consideration indecieg:for the components of the fiel## and! for »;):

L m

Hi(q,C,a,X,my,...,mp) =YY Cuyo(al, (g, ¢') = Xi,)) + hi(q) (A.23)
1=1 ky=1

where the corrections; and its derivatives do satisfy estimatés| < 0.25(1 + |g|).

Let us make some trivial observations. We note that, without loss of generality: (1) one
can setm; = mq; (2) one can suppose thatftk1 and X;, do not depend on the component
indexi: al, = aj andX;, = Xy,.

In fact, these coeffients arise as a result of the discretization of the Gald#egral
(A.17). This discretization could be done in the same manner fori any

Now let us setn = m1L. We can replace the pairs of indeci@s, /) by an indexk.
Then, let us define vector and matricesA and B by relations

1
Bix = Ciky Ay = ay e, X = X,

wheree! is rth component of the unit vectef. This completes the proof.

Appendix B. Generalized Hebb rule and Lax pair

Let us consider system (5.1) with the mat#k from (1.3). Then (5.1) takes the form

dg;

)4
dt=ZAikd>k(q)—bqi+ei b>0 (=12...M (Bl
k=1

where @, are defined byd = Zjle Bjro(g;). This system has appeared in [19-21]. For
b > 0 such a system is dissipative. In the= 0 system (B.1) becomes conservative. If,
moreover,0; = 0 we can rewrite it in the Lax form.

Let us consider the Lie algebra generated by operaBprs- 9/9x;, j = 1,2,...,p
andL; = exp(}_, Ai;x;). These operators satisfy the following commutation relations:

[Li, Bj] = AijLi-

By settingL(q) = >_i_; exp(g:)L; and B(q) = >_7_; ®,;(¢)B; one finds that (B.1) can be
rewritten as

dL

dr [B. L]
i.e. by the Lax pair.

Thus, one can expect that (B.1) can be resolved. It can be done by some substitution

[21], even forf; # 0 andb # 0. It yields that system (5.1) can generate (fox 0) any
hyperbolic attractors, under a suitable choicelof M ando.
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