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Abstract. The generalized Hebb rule (with a non-symmetrical synaptic matrix) allows us to
create simple neural networks with complicated large time behaviour. These networks can
simulate, in a sense, any dynamics and, in particular, can generate any hyperbolic attractors and
invariant sets.

The explicit mathematical algorithm allows us, by adjusting the network parameters (the
neuron number, coupling matrix and thresholds) to obtain a network with given large time
dynamics.

1. Introduction

In this paper, neural networks are considered

xi(t + 1) = σ
( M∑
j=1

Kijxj (t)+ θi
)

i = 1, . . . ,M. (1.1)

Over the last decade, a number of works have focused on system (1.1) playing a crucial
role as a simple model of attractor neural networks [1–5]. Besides the case of continuous
states (xi ∈ R), we shall study models with discrete states (spins)si ∈ {−1, 1}

si(t + 1) = sgn

( m∑
j=1

Kij sj (t)+ θi
)

i = 1, . . . ,M. (1.2)

In (1.1), let us fix a sigmoidal functionσ ∈ C∞ with fast decreasing derivativeσ ′ and
satisfyingσ(+∞) > σ(−∞). Denote byP the system parameters (the number of neurons
M, the coupling matrixK and the thresholdsθi): P = {M,K, θ}.

The attractors of (1.1) with symmetricK are also well studied [1–3]. Other cases have
been investigated, mainly by computer simulations [4–7], see also [8] and references therein.
Here we consider the fully asymmetric SK model where the synaptic matrixK is defined
by the following ‘generalized’ Hebb rule

Kij =
p∑
l=1

AilBlj 0< p < M (1.3)

and suggest an analytic approach to this attractor problem (computer simulations are used,
mainly to check the analytic results). This small generalization of the classical Hebb rule
K = AAT makes the appearance of many new physical effects in systems (1.1) and (1.2)
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possible. Moreover, generalization (1.3) allows us to construct exactly solvable analytical
models of chaotic neural networks.

The aim of this paper is to show, by (1.3), that systems (1.1) and (1.2) possess wonderful
properties. They can simulate any prescribedC1-smooth dynamical systems (maps) and
generate all structurally stable chaotic (for example, hyperbolic) attractors. More precisely,
for a given structurally stable attractor, there exists a suitable choice of the parametersP
such that network (1.1) generates the same (up to a homeomorphism) attractor.

One can also construct the network with a given topology of the structurally stable local
attractors and their attraction basins.

Another analytical approach to chaotic behaviour in the neural networks has been
suggested in a recent paper [9]. It gives a special kind of chaos connected with the so-
called snap-back repellers (which occur in maps with special stretching properties). Detailed
mathematical definition of such repellers is sufficiently complicated and we refer to [9] and
references therein. Here we just mention the main properties of these repellers. Systems
which possess them generate an infinite number of periodic cycles. Moreover, these repellers
are robust: they do not vanish under small smooth perturbations of the dynamical system.
(Let us note that hyperbolic invariant sets and attractors also have analogous properties.)

The model [9] can be considered as a complicated variant of (1.1). On the other hand,
it is easy to show (see below) that any snap-back repellers can be obtained by (1.1).

Let us turn to case (1.2). Given mapq → G(q), we can create network (1.2) simulating
this map (see section 2). For discrete networks (1.2) chaotic attractors are impossible
since all the trajectories are periodic (maximal period 2M ). Instead of chaos, we observe
complicated periodic trajectories. The results depend on properties of a given mapG and the
number of spinsM. Under condition (1.3) (one-dimensional case,p = 1), one can prove that
the maximal possible period isM. Let us note here, that in some other models of asymmetric
neural networks cycle lengths have exponentially large order [8]. We have carried out
computer simulations for the classic chaotic maps. They have shown that approximations
(1.3) with differentM � 1 give a number of periods within the interval [1,M]. For fixed
M, we usually observe a family of stable attracting periodic cycles. Periods depend onM

in a very complicated and intriguing manner (see section 4 and figure 2).
This picture can be explained by recent work [10] and classical results [11]. Network

(1.2), simulating mapG, generates some perturbed trajectories (pseudo-orbits) ofG. At
each iteration, the corresponding errorε has the orderM−1.

Can such pseudo-orbits correspond to some actual trajectory of the dynamical system
G? Much attention was given to this problem (see, for example, [11, 12]). It was shown
that, in the neighbourhood of hyperbolic attractor or invariant sets, there holds a so-called
shadow property, i.e. a trajectory can be found close to the pseudo-orbit for alli.

Our calculations and analytic results yield that (1.2) can generate some periodic pseudo-
orbits (corresponding to actual orbits coexisting in the hyperbolic attractor). However, to
create a number of orbits, we should usesimultaneouslya number of networks (1.2) with
differentM (one can imagine, for example, that we turn on and turn off some neurons).
It is remarkable that, for a fixedM, the periodic cycles are very stable (it can give a new
approach to the problem of periodic trajectory stabilization [13]). The average cycle length
is Mρ where the exponentρ depends on the chaotic attractor properties (see [10]).

To conclude this introduction, let us note that models (1.1) and (1.2) can be useful for
pattern recognition and associative memory devices (as the optimal control systems) for the
‘neural identification’ of the dynamical systems and other applications. For example,
superpositions of network (1.2) and similar networks generate any complicated prescribed
spatial-temporal spin patterns (see sections 2.1 and 3.3).
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2. Main mathematical results

2.1. Continuous states

We begin with the case of continuous states (1.1). The main assertion can be formulated
as follows. Define quantitiesqi (the ‘hidden’ collective coordinates) byqi =

∑M
j=1Bijxj ,

i = 1, . . . , p.
Then the ‘hidden’q-dynamics will be given by

ql(t + 1) =
M∑
k=1

Blkσ

( p∑
r=1

Akrqr(t)+ θk
)
= F(q,P ) (2.1)

and the neuron dynamics is governed byq:

xi(t + 1) = σ
( p∑

l=1

Ailql(t)+ θi
)

i = 1, . . . ,M. (2.2)

Thus, the spins form some ‘coherent pattern’ evolving together withq(t) and they are
strongly correlated (see below).

The family of maps (2.1), depending on the parametersP , has the following key
property (which can be called ‘absorbtion with approximation’).

Theorem 1.Let Q be thep-dimensional unit cubeQ = {q : |qi | 6 1} andq → G(q) any
prescribedC1-mapping that mapsQ insideQ. Then, for anyδ > 0, there is a such choice
of the parametersP that

|G(q)− F(q,P )| |G′q(q)− F ′q(q,P )| < δ (q ∈ Q) (2.3)

(‘approximation’) and, moreover, for any pointq ∈ Rp, iterations q, F (q), F 2(q) =
F(F(q)), . . . , F n(q) . . . enter for the cubeQ and remain inQ i.e. this cube is an absorbing
set (‘absorbtion’). This means thatFn(q) ∈ Q for any n > n0(δ, q).

In other words, this assertion can be explained as follows.
For given mapG (such thatG(Q) ⊂ Q), we can construct the neural network with

‘hidden’ q-dynamics simulating this mapG for large iterations (times). Indeed, theF
iterations quickly enter for the cubeQ. In this cube, any prescribedG can be approximated
by F(q,P ) with any given precisionδ.

The proof of this assertion is a development of the well known results on so-called
multilayered neural networks, see [14–16]. An outline of the proof can be found in section 3,
mathematical details are given in appendix A.

Note that the absorbtion property plays an important role. In fact, approximation (2.3)
may hold only in compact domains. Thus, we should be sure that any iteration sequence
attains, at some step, such a compact domain.

This result has the following basic consequences.
(1) For any givenT > 0 andε > 0, choosing sufficiently smallδ(ε, T ), one canε-

approximate any families ofG-iterationsq,G(q),G2(q), . . . ,GT (q). This means that, for
any positive integerj < N(ε) and anyq ∈ Q, one has|Fj (q,P )−Gj(q)| < ε. Thus, we
can globally control families of trajectories (of any finite length).

(2) The second basic corollary is that if the prescribed mapG has some robust (rough)
local chaotic attractor (or invariant set) (for example, hyperbolic attractor0 with the shadow
property [8]), we can obtain the neural network with the hiddenq dynamics generating a
topologically equivalent local attractor (invariant set)0̃. (This equivalency means that there
exists a homeomorphismh that maps theG-trajectories inside0 onto theF -ones insidẽ0).
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Thus, we can say that all robust chaotic regimes, occurring in dynamics, can be realized
by network (1.1).

Examples of robust maps are given, for instance, by theA-axiom Smale diffeomorphisms
(which can have a number of local attractors and their basins), the Anosov maps and others.
The famous simple example is given by the Arnold map: if(x, y)mod 1 denotes a point
on a two-dimensional torus thenG(x, y) = (2x + y, x + y).

All homoclinic situations, under some suppositions, can also be realized by the networks
(since, due to the Birkhoff–Smale theorem, they are connected with hyperbolic sets). Inside
such hyperbolic sets the infinite number of unstable cycles coexist and periods of these
cycles can be extremely large. The behaviour of the map iteration inside these sets, in a
sense, is completely random (see [11, 12]) and can be described by the so-called Bernoulli
shifts [11].

All the snap-back repellers (see [9]) can also occur in dynamics (1.1). Indeed, it is easy
to see, by the definition (see [9]), that these repellers are robust. Such repellers also born
infinite collections of periodic cycles with large periods [9].

A very simple criterion of chaos onset in one-dimensional maps was suggested by
[17, 18]: a cycle with period three entails the chaos existence. If a given mapG has the
period 3, then, for smallδ, the corresponding neural mapF also has period 3 (for smallδ),
thus also generating chaos.

Remark. Interesting chaotic maps are given by piecewise linear maps [19]. The simplest
classical example isG(q) = 2qmod 1, whereq ∈ [0, 1]. By piecewise linear maps we can
create dynamical systems simulating the Bernoulli shifts (i.e. completely ‘random’). For
such maps, inequality (2.3) can be satisfied anywhere excluding small neighbourhoods of
the break points.

(3) The third point is a possibility to create, by superpositions of (1.1) (or (1.2)) and
some additional network,arbitrary prescribed spatial-temporal spinx patterns.

To see this, first let us note that although the SK model (1.1) can generate any attractors
it, nonetheless, cannot generate arbitraryx patterns.

To see it, let us study the spin–spin correlators. First let us note that each chaotic
dynamicsF(q,P ) generates, in a canonical manner, a invariant measureµ(q) on a chaotic
attractor (the so-called Bowen–Ruelle–Sinai (BRS) invariant measure). Theorem 1 yields,
roughly speaking, that systems (2.1) should generate all such measures (‘equilibrium’q-
densities). Indeed, since all the hyperbolic sets can occur in dynamics (2.1), all the BRS
measures can also appear, therefore, by adjusting the network parameters, we can change
µ(q). Note that the limit measures (densities)µ can also depend on initial distributions
ρin(q) = ρ(q, 0). In fact, a number of hyperbolic local attractors0i can coexist in dynamics
(2.1) and each attractor has the corresponding attraction basinB(0i). If, at initial moment,
the support ofρin is contained inB(0k) thenµ is a BRS measureµk induced by0k. If this
support has intersections with some basins, we obtainµ as a linear combination of different
µk. Thus, in this case we have a set of different invariant measures.

Givenµ(q) one can calculate the corresponding invariantx-distribution by (2.2). This
yields that the mean correlation betweenith andj th spins is defined by

〈xixj 〉 =
∫
. . .

∫
Q

σ

( p∑
l=1

Ailql + θi
)
σ

( p∑
l=1

Ajlql + θj
)
µ(q) dq1 . . .dqp (2.4)

where the brackets denote time averaging. Thus, we can conclude that, although the spin
dynamics is chaotic, there exist strong spin correlations (sinceM spins are ruled byp
hidden modesqi and usuallyp � M).
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To solve the problem of simulation of any spin patterns (with arbitrary correlations) let
us consider, in addition, the following network:

zi(t) = sgn

( M∑
j=1

Jij xj (t)

)
(i = 1, 2 . . . N) (2.5)

where the quantitieszj ∈ {1,−1} are some ‘outputs’ and thexi are some ‘inputs’.
The key observation is that combinations of (2.5) and network (1.1) or (1.2) (generating

inputs x for (2.5)) allow us to createpractically any prescribed output spatial-temporal
patterns. We consider this problem in detail below, for the case of discrete states (1.2) (see
section 3.3).

2.2. Discrete states

For (1.2) we defineqi asqi =
∑M
j=1Bij sj . These quantities lie in a discrete setB. After

the first iteration,q enter forB and forever remains in it. We have

ql(t + 1) =
M∑
k=1

Blkσ

( p∑
r=1

Akrqr(t)+ θk
)
= F(q,P ). (2.6)

Thus we are dealing with the two dynamics: piecewise constant mapF : B → B from
(2.6) and discrete map (1.2). They are connected by relation (2.2) (whereσ = sgn).

For p = 1 equation (2.6) can be simplified. We can assume, without any loss of
generality, thatAil = 1 and θi > θi+1, θi ∈ (0,−1) and denoteBli = bi . Then
equation (2.6) takes the form

q(t + 1) =
M∑
k=1

bkσ (q(t)+ θk) = f (q(t), b, θ,m). (2.7)

Let be q ∈ [0, 1] and f maps this interval into itself. There exists a natural partition of
[0, 1] in a number of subintervalsβi = [−θi+1,−θi ]. The behaviour of iterations (2.7) is
completely defined by some matrixαij which is 1, if the imagefi = f (βi) lies in βj , and
0 otherwise. We can have onlyM different valuesfi in B, thus, dynamics (2.7) generates
only periodic cycles and the maximal period isM. In particular, the matrixαij allows us to
determinate all the possible cycle lengths appearing in the system (2.7). In order to extract
these lengths we calculate matrix iterationsA,A2, . . . ,AM . Non-zero diagonal elements
of the matrixAk correspond to the cycle with periodk.

Suppose thatf (q) from (2.7) approximates some smooth or piecewise smoothG(q)

(below we shall show that such approximations, of any precision, actually exist; see
theorem 2).

Thus, this partition [0, 1] by subintervals{βj }Mj=1 gives some ‘round-error’ scheme
generating pseudo-orbits ofG.

Let us turn to the spin dynamics. Beginning witht = 1, all s-patterns areM vectors
s(t) = (1, 1, . . . ,1,−1, . . . ,−1), where the sign break is located atith coordinate ifq(t)
lies between−θi and−θi+1.

Let us take into consideration some initial spin distributionsρin(s). This spin
distribution leads to some initialq density. If the spin numberM is large, one can expect
that this density is strongly localized. In fact, let the spins be distributed randomly and
independently. Then, for largeM, the density is a Gaussian peak. Calculations (see below)
show that coefficientsbi have orderM−1. Thus, initialq densityρin(q) is centred at 0 and
the peak width is O(M−1/2).
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If we take other spin distributions, we can obtain peaks localized at pointsq0 6= 0.
However, this ‘strong’ localization is actually strong only for non-chaotic mapsG.

If iterationsGT (q0) give an isolated stable orbit, for example, with periodT0, then, for
almost all initial spin configurations, spin dynamics (1.3) also will give a periodic orbit
with the same periodT0. But if, on the contrary, the pointq0 lies in some chaotic attractor,
then any domain of size O(M−1/2) contains, for largeM, a number of small subintervals
βj = O(M−1). Thus, there should exist a number of spin trajectories with large periods. It
was observed in computer simulations (see section 4).

Let us formulate now a discrete variant of theorem 1.

Theorem 2.Let Q be thep-dimensional unit cubeQ = {q : |qi | 6 1}, q → G(q) be any
prescribedC0-mapping that mapsQ in Q. Then, for anyδ > 0, there is a choice of the
parametersP (δ) such that

|G(q)− F(q,P )| < δ (2.8)

(‘approximation’) and, moreover, starting with any pointq ∈ Rp, iterations
q, F (q), F 2(q) . . . enter for the cubeQ and remain inQ i.e. this cube is absorbing
(‘absorbtion’).

Naturally, the spin numberM(δ) tends to∞ as the approximation precisionδ→ 0. It
is easy to see that property (1) again holds. However, (2) is now invalid (as was discussed
above).

In section 3.3 we shall show that point (3) holds for discrete networks i.e. we can create
a superposition of two networks generating arbitrary prescribed time periodic (with any
given periodT ), by a suitable parameter choice.

3. Construction of network with the prescribed large time and spacetime behaviour

3.1. Continuous states

3.1.1. Outline of proof. Let us turn to the key ideas in proving theorem 1. The method is
constructive and robustand allows us to find the network simulating given dynamicsG.

First of all, let us note that, if we remove the ‘absorbtion condition’ (that iterationsFn

enter for the cubeQ, together with the second inequality (2.3)), then our assertion is well
known from the theory of multilayered neural networks [14–16].

To obtain our (stronger) assertion, we should combine these methods with new
approaches.

Let G be some map defined inQ mapping any points of this cube in its interior. Let
us extend (it is possible) this map by someC1-mapG̃ on all Rp in a special way. All the
iterationsG̃n shall enter forQ at some step (see appendix A) since thisG can be chosen
as a contraction (forq outside of the cubeQ).

After this we find a special approximation of this new̃G in all spaceRp. To find it, we
first use standard ideas [16] that reduce (3.1) to the one-dimensional case (q ∈ R). Then
G becomes a function ofq. Moreover, one can, without any loss of generality, assume
that this functionG is smooth and fast decreasing (from the Schwartz class). This reduced
approximation problem can be solved explicitly, by the classical ideas from the wavelet
theory [17]. We know that the wavelet methods are robust and effective in signal denoising
and compressing. Thus, this method is robust (see appendix A).
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Figure 1. Invariant measureµ for x → 4x(1− x) (full curve) and its neural approximation by
three neurons with precisionδ = 10−5 (111).

3.2. Discrete states

Here proof also proceeds into some steps. Following section 3.1, we note that one can only
consider the one-dimensional case:G(q) ∈ R, q ∈ R. The approximation satisfying (2.8)
can have, for example, the formf (q) = ∑M

k=1 bksgn(q + θk) andq ∈ [0, 1]. Clearly, the
function f has constant values inside each interval [−θk+1,−θk], whereθk > θk+1.

Let us require that functionsf (q) and G(q) should coincide atM points qk =
− 1

2(θk+1+θk) thenbk can be chosen byb1 = 1
2(G(qM)+G(q1)), bk = 1

2(G(qk)−G(qk−1)).
Then for smooth mapG the approximation error has order maxk |θk+1−θk|. (Of course,

there exist many other approximations, for example, one can takeqk = −θk etc.)
In the next section, we describe results of calculations with these approximations. To

conclude this section, let us note that a natural approximation of the piecewise linear
mapG(q) = 2q − 1 mod 1 leads to the following simplest mapping of the discrete set
B = {1, 2 . . .M}. This map transformsi to j (i) = 2i − 1 modM. Here the periods can
be calculated analytically that allows us to explain figure 1. In fact, it is easy to show that
such a map has a cycle of longT (whereT > 0 is integer) only and only if 2T = 1 modp
wherep 6= 2 is a prime divisor ofM. For example, ifM = 28 then the period is 3 since
28= 2× 2× 7 and 23 = 1 mod 7, ifM = 1026 then there occurs a cycle with period 18
(1026= 2× 33× 19 and 218 = 1 mod 19 according to the ‘little’ Fermat theorem).

In general, the periodsT are values of the Euler functionφ(p) of odd prime divisors
of the spin numberM.
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This simple example helps us to see the strong irregularity of the periods (see figure 1).
In fact, forM = 1024 we obtainT = 1; nonetheless for close valueM = 1018 we have
T = 508, since 509 is prime!

In the following we shall use this example.

3.3. Generation of arbitrary patterns by two discrete networks

Let zi(t) be an arbitrary output pattern consisting of 1 or−1 (wherei = 1, 2, . . . , N and
t = 1, 2, . . . , T ). Let us consider the following systems of linear equations for unknown
connectionsJij

zi(t) =
M∑
j=1

Jij sj (t)) i = 1, . . . , N t = 1, 2 . . . T (3.1)

wheresj (t) and zi(t) are given. Let us setN > T . Then systems (3.1) can be resolved
if T patternssj are linearly independent (i.e. there exist no coefficientsCt such that∑T

t=1Ctsi(t) = 0 for all i).
It is not difficult to check this condition for concreteA,B, θ andM. For example, we

can take these parameters so that network (1.2) will simulate the mapq → 2q − 1 mod 1
(see the example from section 3.2). Then system (1.2) can generate a cycle of longT0 > T

where all s patterns for differentt = 1, 2, . . . , T0 are linearly independent. This follows
from section 2.2. Indeed, the vectorss(t) are s(t) = (1, 1, . . . ,1,−1, . . . ,−1) where we
obtain the different numbers of 1 for differentt = 1, 2, . . . , T0. This simple observation
completes the proof.

4. Computer simulations

We discuss here the following three problems: (1) approximation of givenG by F (see
(2.3)), (2) closeness of iterations, and (3) invariant measures forG andF .

We focus our attention on the three classical one-dimensional maps: (a) the mapq

→ rq exp(−λq), q > 0, (b) the quadratic mapq → rq(1 − q), 0 < r 6 4 and (c)
q → rqmod 1.

4.1. Continuous case

For (a) (r = 13,λ = 0.1) we, using only 7–8 neurons, can obtain an approximationF giving
the precisionδ = 5.26×10−2 within q-interval [0, 40]. We observe a stable attracting cycle
of length 4. The relative differences between the iterationsGT andFT , even forT > 1000,
do not exceed 5× 10−2.

We see a similar situation for the quadratic map, while we are dealing with stable cycles.
All stable periodic cycles of (b) and its neural approximationsF are very close.

It is well known that one can observe the chaotic behaviour for (b) ifr, for instance,
lies within [3.8, 4.0]. In this case trajectories ofG and the approximationF are close but
only for a small number of iterations: eventually, the trajectories diverge exponentially. For
example, let the approximation precision be at 10−7 and r = 4. Then we have observed,
during 50–150 (depending on initial dataq) iterations, the relative difference betweenFT (q)
andGT (q) at 2–3%.

However, the statistical properties ofF andG(q) = rq(1− q) are always very similar.
In fact, the invariant measureµ for r = 4 can be calculated analytically (seldom is the
case!) [21]. It isµ = 1/π [x(1− x)]−1/2.
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The measure of the neural approximation can be calculated by computer (the algorithm
see [21]). The accordance is excellent: curves coincide anywhere excluding very small
neighbourhoods of boundary points, see figure 1.

4.2. Discrete case

Here we have considered mainly maps (b) and (c). The most interesting example is (b),
since this map shows the period doubling bifurcations when the parameterr takes values
at r = 3.5, 3.56, 3.57. . . [21]. If r at 4, we observe the chaos [21].

While we are dealing with stable periodic cycles, discrete approximations work quite
well, however now we should take about 500–1000 neurons. To check it, we have prepared
the two independent programs based on two different algorithms (one of them we have
briefly discussed in section 2.2). These programs calculate the periods appearing in dynamics
(2.7). Suppose we takeM = 600 neurons (spins) and approximate the mapq → rq(1− q)
(that gives the precisionδ in (2.5) of the order 0.001). We have seen that actually (2.6)
exhibits the same bifurcation sequence (periodic cycles with period 2, 4, 8, 16). Here results
are not sensitive to details of approximation scheme (see section 3.2).

For the chaotic domain (r = 4) we observe another picture. The dependence of the
period on the neuron numberM becomes very non-trivial. For case (c) it can be described
analytically (for special approximations, see section 3.3).

For example, if we use approximation (2.7) of map (b) withM = 200, we observe only
the single cycle with periodP = 9. If M = 500, we have the three different cycles with
periodsP1 = 4, P2 = 4 andP3 = 11. ForM = 800 periodsP1 = 2, P2 = 3, P3 = 11
have been received, forM = 900 we have obtainedP1 = 3, P2 = 5, P3 = 19 etc.
The period lengths (as well as the number of periods) is extremely sensitive toM and
to the approximation choice. For example, whenM = 4125 we have found 5 periods:
P1 = 3, P2 = 5, P3 = 8, P4 = 21, P5 = 66, forM = 4126P1 = 3, P2 = 20, P3 = 45 and
for M = 4127P1 = 3, P2 = 110. In the last case the overwhelming majority of initial
configurations evolves to a cycle withP = 110, and it is typical. However, even a small
change of the matrixK can drastically change the output periodic spin trajectories.

This complicated period spectrum can be illustrated by figure 2.
We have also calculated the spin–spin correlators for discrete approximations. Here the

accordance between computer results and our predictions is better for suchM where we have
the long cycles. If this cycle is relatively short (length< 40), the actual correlator values
may differ strongly from (2.4) (for example, one can obtain 0.13 or−0.40 whereas the
theory foresees−0.18). These results can be easily explained. In contrast to the continuous
case (see section 4.1), statistical properties ofG and its discrete neural approximationsF
are very different. In fact, for discrete case attractor ofF is a union of limit cycles and
equilibria. Number of these cycles, its lengths and attraction basins are very sensitive to
approximation choice and number of neurons, see figure 3. The analogous behaviour we
already observed in the example of section 3.2 was studied completely analytically.

5. Conclusion

In this paper we have established the possibility of generation ofany structurally stable
kinds of chaos (including all hyperbolic attractors and invariant sets) by the simplest neural
network: the fully asymmetric SK model. The superposition of two such networks can
generate any spatial-temporal patterns.

Naturally such assertions can be proved only analytically. The key role here is played
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Figure 2. Cycle length appearing in two different neural approximations ofx → 4x(1− x)
with same number of neurons.1 corresponds to one approximation,+ to another.

by the generalized Hebb rule (1.3) that gives some explicit choice of the synaptic matrix.
We have not considered learning methods here.

We suppose that the most effective (from a calculative point of view) learning method
should be based on a gradient descent or a combination of the Hebb rule and gradient
methods.

To conclude, we would like to note some key points. The great advantage of
such a model as the Hopfield model with symmetrical synaptic matrix is that it can be
studied analytically because its properties remind us of those of a common statistical
mechanical system possessing an energy (mathematically, Lyapunov functional decreasing
along trajectories). In nature, however, we observe non-symmetrical neuron connections
that lead to periodic and chaotic behaviour. In such a real situation, it is impossible to find
an analogue of the energy (Lyapunov functional).

The generalized Hebb rule (1.3) allows us to overcome this difficulty. From the physical
view point, such a rule leads to the appearance of the natural ‘order parameters’qi (see
section 2.1) governing the dynamics of the network.

The main result of such an approach is as follows. For any prescribed global geometry of
an attractor, if this attractor is structurally stable (robust), we can, by (1.3), create analytically
solvable simple models of neural networks with topologically equivalent attractor geometry.

Hebb rule (1.3) also helps to find a number of the coupled oscillator and reaction–
diffusion systems with analogous complicated large time behaviour [22–24]. The simple
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Figure 3. Length of cycles appearing in neural approximations ofx → 4x(1− x).

example can be given by the classical Hopfield system [25]

dqi
dt
=

M∑
j=1

Kijσ (qj )− bqi + θi b > 0. (5.1)

The important point is a wonderful connection between (1.3) and the Lax pair representation.
The substitution (1.3) forK leads to a remarkable system [23, 24]. This system forb = 0
can be rewritten in the Lax form (see appendix B).
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Appendix A. Proof of theorem 1

This proof is standard, mainly follows [16, 23] and proceeds in a number of steps.

Step 1. Prolongation of mapG. SupposeG is defined inQ andG(Q) ⊂ Q. Then we can
extend this map on allRp so that this extended map̃G will satisfy:

(a) G̃ ∈ C1(Rp) and, inside the cubeQ, G̃ = G;
(b) |G̃| < a|q| for any q ∈ Rp which lies outside of some small neighbourhoodV of

Q. The constant 0< a < 1 (this means that outside ofQ the G̃ is a contracting map).
Moreover, let beG̃i(q) ≡ 0 if |q| > 2.
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SuchG̃ can be obtained in a simple way, and we omit the details. Notice thatV and
a can be chosen so that all the iterationsG̃n will converge toQ.

Step 2. Approximation of the map̃G by averaging. Let us approximate this new map̃G
uniformly in Rp in the normC1 with accuracyδ/10 by a newC∞(Rp)-mapH from the
Schwartz classS(Rp) of fast decreasing functions. This approximation can be obtained by
averaging [23]

Hr(q) =
∫
Rn
G̃(q − q ′)ωr(q ′) dp q ′ (A.1)

whereωr is a cut-off positiveC∞-function with the support in the ball of radiusr. We
have,|Hr − G̃|C1 tends to 0 asr → 0. Using it, we take a smallr and setH = Hr .

Step 3. Reformulation and simplification of the approximation problem.Instead of (2.3),
we shall consider the following new problem:to find parametersP such that

|H(q)− F(q,P )|, |∂H(q)/∂qi − ∂F (q,P )/∂qi | < 1
4δ(1+ |q|) (q ∈ Rp) (A.2)

for this new fieldH from the Schwartz classS(Rp). We notice that (A.2) implies (2.3).
Moreover, for smallδ, since H is contracting outside ofQ and a < 1, the neural
approximationF also is contracting outside ofQ. Thus, the solution of (A.2) resolves
both our approximation and absorbtion problems from theorem 1 for the original mapG.

Remark. We can, without any loss of generality, suppose thatH(q) in (A.2) is a scalar
function of q. In fact, we can combine, in a special way, the separate approximations of
each componentHj (see final step). Thus, let us assumeH ∈ R. Below we omit the
component indexj (up to final step).

Step 4. Representation of scalar functionH by sum of ‘plane waves’ and one-dimensional
reformulation of the problem. It follows [16]. The functionH can be approximated, for
largeL, by the sum

H̄ (q) = L−1
L∑
l=1

ηl(xl) xl = 〈q, el〉 (A.3)

where the vectorsel are uniformly distributed among the unit sphere and the brackets
denote the standard scalar product. Representation (A.3) can be considered as a sum of
‘plane waves’ηl(x). The following step gives approximations ofηl(x).

Step 5. Approximation of functionsηl(x). We temporarily omit indexl. Denotea =
(a1, a2, . . . , aM) andX = (X1, . . . , XM). Let us define

ξ(x, a,X,M) =
M∑
i=1

ciσ (ai(x −Xi)). (A.4)

Moreover, let us set

p(x, a, c,X) = η(x)− ξ(x, a,X,M). (A.5)
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In this section our aim is to resolve, for anyδ̃ > 0, the following approximation problem
for η(z): to find an integerM and numbersai, ci andXi such that

|p(x, a, c,X)| < δ̃(1+ |x|) (x ∈ R) (A.6)∣∣∣∣∂p(x, a, c,X)∂x

∣∣∣∣ < δ̃ (x ∈ R). (A.7)

Due to steps 1–4, the solution of (A.6) and (A.7) allows us to find the solution of our
original approximation problem.

Let us focus attention on (A.7). Our aim is to show that, for anyδ̃ > 0, there exists a
vectora(δ̃) with componentsai > 0 and vectorsc(δ̃) andX(δ̃) such that for the derivatives
of η andξ the following estimate holds:

|ν(x)− ξ ′x(x, a, c,X)| < δ̃ (x ∈ R) ν(x) = η′x(x). (A.8)

It is clear that (A.8) implies (A.6) and (A.7). In fact, integratingη′ − ξ ′ one has∫ x

0
η′x dx =

∑
i=1

a−1
i (ci(σ (ai(x −Xi))− σ(−aiXi))+ s(x) |s(x)| < δ̃|x| (A.9)

that gives

|η(x)−
∑
i=0

c̃i (σ (ai(x −Xi))| < δ̃(1+ |x|) (A.10)

wherea0 = 0, c̃0 = η(0)σ−1(0) and one supposes (without any loss of generality) that
σ(0) 6= 0.

Let γk, zk (wherek = 1, 2, 3) be numbers such thatz1 < z2 < z3 and

γ1+ γ2+ γ3 = 0 γ1z1+ γ2z2+ γ3z3 = 0. (A.11)

Then the function

ρ(z) =
3∑
i=1

γiσ
′(z− zi) (A.12)

is a ‘wavelet-type’ function such that∫ ∞
−∞

ρ(z) dz = 0
∫ ∞
−∞

zρ(z) dz = 0. (A.13)

Note that ∫ ∞
−∞

ν(x) dx = 0. (A.14)

Let us suppose, in addition, that∫ ∞
−∞

xν(x) dx = 0. (A.15)

If the approximation problem (A.8) is solved for suchν = η′, then it is resolvable in
general case (when only (A.14) holds). In fact, one can always write

ν̃ = ν − c̃σ ′(x). (A.16)

Sinceσ(+∞) 6= σ(−∞), we can choosẽc so thatν̃ satisfies (A.15).
To solve the approximation problem (A.8), let us write the well known Calderón identity

(playing a key role in the wavelet theory)

ν(z) = Cρ
∫ ∞

0

∫ ∞
−∞

λ−3C(λ,X)ρ(λ−1(z−X)) dX dλ (A.17)
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where

C(λ,X) =
∫ ∞
−∞

ν(z)ρ(λ−1(z−X)) dz (A.18)

andCρ is a constant depending on the functionρ. These relations hold, sinceν is a fast
decreasing function (ν ∈ S(R)).

The next step is now a transformation of (A.17) into in a discrete sum. To do this, let
us observe the following. If we can appoximate integral (A19) by

ν(r, R1, R, z) = Cρ
∫ R1

r

∫ R

−R
λ−3C(λ,X)ρ(λ−1(z−X)) dX dλ (A.19)

(whereR1, R and r > 0) with any precisionδ1, then the approximation problem (A.8) is
solved.

In fact, integral (A.19) can be replaced, with any precision, by a finite sum (the
Riemaniann sum). Namely, for anyε > 0 one has

sup
z∈I
|ν(z)−

∑
i

∑
j

λi
−3mijC(λi, Xj )ρ(λ

−1
i (z−Xj))| < ε (A.20)

for someλi , Xj and mij . By (A.12) the sum in estimate (A.20) can be rewritten as∑M
i=1 ciσ

′(ai(x −Xi)).
Finally, to solve the approximation problem, one needs to check that the contributions

Jk of type

J1 =
∫ r

0

(∫ ∞
−∞

λ−3C(λ,X)ρ(λ−1(z−X)) dX

)
dλ

J2 =
∫ ∞
r

(∫ ∞
R

λ−3C(λ,X)ρ(λ−1(z−X)) dX

)
dλ

(A.21)

satisfy

|Jk| < κ(r, R) (A.22)

whereκ → 0 asR→∞ andr → 0.
In order to investigateJk, let us estimateC(λ,X). First, let us notice that, due to

condition (A.13) and the Taylor expansion, one has, for 0< λ < 1, that

|C(λ,X)| < λ3
∫
R
y2ν ′′(X + sλy)ρ(y) dy s ∈ [0, 1].

Using ν ∈ S(R), one obtains

|C(λ,X)| < CNλ
3(1+ |X|)−N

and, therefore,|J1| < c(CN + 1)r.
Thus estimate (A24) holds fork = 1.
ConsiderJ2. One observes that|C(λ,X)| < cN |1 + λ−1X|−N for any N > 0 and

0< λ < 1. The estimate ofJ2 follows now from inequalities∫
λ−3 dλ

∫ ∞
R

(1+ λ−1X)−N dX <

∫
λ−2 dλ(1+ λ−1R)−N <

∫ 1

0
dt (1+ tR)−N.

It implies that

|J2| < c

(∫
R

λ−3 dλ+ R−1

)
→ 0 (R→∞).

Finally, it completes the fifth step and thus the approximation problem forηj is solved.
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Final step. This step is a combination of the previous steps and the ‘plane wave’
representation.

Let us consider approximationsξ from (A.4) and substitute it into the right-hand side
of (A.2). It gives the following representation for componentsHi of H (where we again
introduce into consideration indecies:j for the components of the fieldH and l for ηl):

Hi(q, C, a,X,m1, . . . , mL) =
L∑
l=1

ml∑
k1=1

Cik1lσ (a
l
ik1
(〈q, el〉 −Xik1))+ hi(q) (A.23)

where the correctionshi and its derivatives do satisfy estimates|hi | < 0.25(1+ |q|).
Let us make some trivial observations. We note that, without loss of generality: (1) one

can setml = m1; (2) one can suppose thatalik1
andXik1 do not depend on the component

index i: alik1
= alk1

andXik1 = Xk1.
In fact, these coeffients arise as a result of the discretization of the Calderón integral

(A.17). This discretization could be done in the same manner for anyi.
Now let us setm = m1L. We can replace the pairs of indecies(k1, l) by an indexk.

Then, let us define vectorX and matricesA andB by relations

Bik = cik1l Akr = alk1
elr Xk = Xk1

whereelr is rth component of the unit vectorel . This completes the proof.

Appendix B. Generalized Hebb rule and Lax pair

Let us consider system (5.1) with the matrixK from (1.3). Then (5.1) takes the form

dqi
dt
=

p∑
k=1

Aik8k(q)− bqi + θi b > 0 (i = 1, 2, . . . ,M) (B.1)

where8k are defined by8 = ∑M
j=1Bjkσ (qj ). This system has appeared in [19–21]. For

b > 0 such a system is dissipative. In theb = 0 system (B.1) becomes conservative. If,
moreover,θi = 0 we can rewrite it in the Lax form.

Let us consider the Lie algebra generated by operatorsBj = ∂/∂xj , j = 1, 2, . . . , p
andLi = exp(

∑
s Aisxs). These operators satisfy the following commutation relations:

[Li, Bj ] = AijLi.
By settingL(q) =∑m

i=1 exp(qi)Li andB(q) =∑n
j=18j(q)Bj one finds that (B.1) can be

rewritten as
dL

dt
= [B,L]

i.e. by the Lax pair.
Thus, one can expect that (B.1) can be resolved. It can be done by some substitution

[21], even forθi 6= 0 andb 6= 0. It yields that system (5.1) can generate (forb > 0) any
hyperbolic attractors, under a suitable choice ofK, M andσ .
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